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Abstract— In this work we study the problem of non-
parametric estimation for non-linear time-space dynamic
stochastic processes and in particular for Gaussian processes
(GP). GP methods have been mainly applied to spatial regres-
sion and represent the state of the art for machine learning
thanks to their universal representing properties. However,
their extension to dynamic processes has been elusive so far
since standard machine learning tools give rise unscalable
algorithms. In this work we propose a systematic and explicit
procedure to address this problem by pairing GP regression
with Kalman Filtering. In particular, under the specific time-
space separability assumption of the kernel which models
process and periodic sampling on a (possibly non-uniform)
space-grid, we show how to build a finite dimensional discrete-
time state-space exact representation for the modeled process.
The major finding is that the state at instant k of the associated
Kalman Filter represents a sufficient statistic to compute the
minimum variance prediction of the process at instant k over
any arbitrary finite subset of the space. The proposed strategy
is then compared with the standard non-parametric estimation
and truncated non-parametric estimation strategies both in
terms of estimation performance and computation complexity.

Index Terms— Gaussian regression, machine learning,
Kalman filtering, spatio-temporal Gaussian processes.

I. INTRODUCTION
Gaussian process-based (GP) regression [1] is a Bayesian

learning framework where GP are used as nonparametric
priors for regressors functions. Nowadays, GP based methods
have heavily increased their popularity [2], [3] in disciplines
such as statistical inference and machine learning [3]. In the
classical machine learning setup the modeled process is con-
sidered static. Consequently, classical GP based regression,
i.e., Kriging [4], often assumes as input variables just spatial
locations. Nevertheless, the method can be extended to learn
spatio-temporal processes by treating the time variable as an
additional input feature [3]. In dynamical scenarios however,
the classical GP based regression paradigm presents practical
limitations. These are mainly due to the heavy memory
and computational requirements which grow cubical as the
number of input data. As second drawback, the classical
paradigm is usually based on a batch implementation where
the data are processed at once, after they have been collected.
Conversely, concerning dynamical learning, Kalman filter [5]
offers a computational efficient recursive procedure to learn
dynamical processes. However, this approach requires a a-
priori knowledge of the process to learn.
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In the last decades, much effort has been put to cope
with the computational complexity needed to implement GP
regression methods. For instance, in [3], [6] sparse approx-
imations are exploited. Differently, in [7], [8], the authors
propose a finite memory implementation of the classical
approach based on truncated observations. An alternative
approach, based on the connection between GPs and Kalman
filtering, is presented in [9], [10], [11], whose inception can
be traced back to [1]. The works mainly focus on building
equivalent state-space representations for gaussian processes.
The models are then used to implement a Kalman filter. In
[9] the authors present a preliminary result which applies
to temporal GP regression models. In the more recent [10],
[11], the authors extend the approach to spatio-temporal GPs.
These are reformulated as infinite dimensional state space
models to which Kalman Filtering can be applied.

This work, inspired by [10], [11], emphasizes the practical
implementability of the estimating procedure in terms of
computational complexity. Indeed, while in [10], [11], to deal
with infinite dimenasional operators, only approximated in-
ference schemes are proposed, e.g., based on eigenfunctions
expansions of some operators which govern the stochastic
dynamics, in this paper we develop an algorithm which is
exact. In particular, it returns the exact minimum variance
estimate and is computationally efficient. We confine our
analysis to discrete finite-dimensional spaces. Moreover, we
restrict to a specific yet sufficiently rich class of space-
time separable kernel functions, which, as opposed to [10],
[11], do not require stationarity of the space kernel. These
assumptions paired with the additional assumptions of peri-
odic sampling on a finite number of space locations, allow
to provide a solution which can be exactly implemented
without requiring any additional numerical approximation
and whose complexity scales cubically in terms of the
number of distinct measurements locations and scales only
linearly on the number of prediction locations. In fact, the
major finding is to show that the prediction locations do not
need to appear in state-space representation of the Kalman
filter. Differently, a naive implementation of a finite-buffer
non-parametric estimator which uses only the most recent
measurements, would have a complexity per iteration which
grows cubically in terms of the total size of the buffer,
which could be much larger than the number of distinct
measurement locations, and which does not provide an exact
solution.

II. PRELIMINARIES

In this section we briefly recall the required preliminaries
on nonparametric estimation, Kalman filtering and spectral
factorization.



A. Nonparametric Estimation
In this section we review some fundamental aspects re-

garding the nonparametric Gaussian regression.
Let f : A 7→ R be a zero-mean Gaussian field with

covariance, also called kernel, K : A ×A 7→ R, where A
is a compact set. Assume to have a set of N ∈ N>0 noisy
measurements of the form

yi = f (ai)+ vi, (1)

where vi is a zero-mean Gaussian noise with variance σ2,
i.e. vi ∼N (0,σ2), independent from the unknown function.
Given the data set of input locations {ai,yi}N

i=1, it is known
[12], [2] the estimate f̂ of f is a linear combination of the
kernel sections K(ai, ·), i.e., the kernel sampled in the values
corresponding to the available input locations. In particular,
for any a ∈A , it holds that

f̂ (a) := E
[

f (a)|{ai,yi}N
i=1
]
=

N

∑
i=1

ciK(ai,a) . (2)

The expansion coefficients ci are obtained as



c1
...

cN


= (K̄ +σ2I)−1




y1
...

yN


 , K̄ ∈ RN×N , [K̄]i j = K(ai,a j),

(3)
where I denotes the identity matrix of suitable dimension
and [K̄]i j denotes the i j-th entry of the matrix K̄. Finally, the
posterior variance of f̂ (a) evaluated at the generic location
a ∈A is given by

V (a) = Var
[

f (a)|{ai,yi}N
i=1
]
= K(a,a)−

[
K(a1,a) · · · K(aN ,a)

]
(K̄ +σ2I)−1




K(a1,a)
...

K(aN ,a)


 .

(4)

Clearly, because of the matrix inversion in both (3) and
(4), the method scales as O(N3). Moreover, in real-time
applications, where a certain number of measurements are
collected at each iteration, all the past measurements must
be kept in memory. Thus, the method is more suitable for a
batch, almost static implementation rather than an iterative
time-varying one.

Remark 1 (Spatio-temporal processes): In the following
we consider spatio-temporal processes. Conversely to clas-
sical Gaussian processes, where a usually denotes a spatial
variable, in spatio-temporal processes a represents both time
and space. Hence, without loss of generality, we can write
f (a) = f (x, t). Accordingly, the domain A can be decom-
posed as A :=X ×R+, with X and R+ denoting the spatial
and temporal domain, respectively.

B. Kalman Filtering
In this section we briefly recall some basic notions on

Kalman filtering for finite-dimensional discrete-time linear
state-space dynamical systems [13].

Consider the following system

sk+1 = Ask +wk,

yk =Cksk + vk,
(5)

where, at each iteration k, sk ∈Rn is the state vector, yk ∈Rm

is the output vector, wk ∈Rn and vk ∈Rm are i.i.d. zero-mean
Gaussian random vectors with covariance matrices Q ≥ 0
and R > 0, respectively. A ∈ Rn×n is the state matrix and
Ck ∈ Rm×n is the time-varying output matrix. As commonly
done, we assume both the process and measurement noise to
be uncorrelated with respect to each other, i.e. E

[
wT

k vs
]
=

0 ∀k,s. We also assume the initial condition s0 is drawn from
a Gaussian distribution with zero mean and covariance Σ0,
i.e., s0 ∼N (0,Σ0).
The Kalman Filter applied to the system (5) is described by
the following recursive equations

ŝk+1|k = Aŝk|k (6a)

Σk+1|k = AΣk|kAT +Q (6b)

ŝk+1|k+1 = ŝk+1|k +Lk+1
(
yk+1−Ck ŝk+1|k

)
(6c)

Σk+1|k+1 = Σk+1|k−Lk+1CkΣk+1|k (6d)

Lk+1 = Σk+1|kC
T
k
(
CkΣk+1|kC

T
k +R

)−1
(6e)

where ŝk|k and Σk|k represent the filtered estimate of the
state and the posterior error covariance, respectively; ŝk+1|k
and Σk+1|k represent the (one step) predicted state estimate
and error covariance, respectively; Lk+1 is the Kalman gain;
finally, the filter is initialized assuming ŝ0|−1 =E[s0] = 0 and
Σ0|−1 =Cov[s0] = Σ0.

We recall that, under the assumptions of normal distributed
noises and perfect model knowledge, the Kalman filter is
optimal, in mean square sense. Then, equations (6) return
the minimum mean square error estimate of the state, which
corresponds to

ŝk = E [sk|y0, . . . ,yk] ,

that is, the estimate of the state given all the measurements up
to the k-th one. Moreover, under the Markovianity (memory-
less of the system) property of the state, it holds that

E [sk|y0, . . . ,yk] = E [sk|sk−1,yk] ,

that is, the previous state and the last measurement represent
the sufficient statistic to compute the optimal estimate of the
state at the current time instant.

Finally, it is well known, [14], that if we assume the
output matrix constant, i.e. Ck =C, under the hypothesis of
stabilizability of the pair (A,Q) and detectability of the pair
(A,C) the estimation error covariance of the Kalman filter
converges to a unique value from any initial condition.

C. Spectral factoriation of random processes

Here, we recall some notions about spectral factorization
of random processes and realization theory. In particular we
want to show how, specific class of processes admits an
equivalent exact state-space representation.

Consider a stationary random process f (t) with covariance
h(τ). Thanks to the Wiener-Khinchin theorem, it is known
that the power spectral density (PSD) of the process is equal
to the Fourier transform of its covariance h, i.e.,

S(ω) := F [h(τ)](ω) .



Moreover, in the particular case when S = Sr is rational of
order 2r, thanks to spectral factoriation [15], its PSDs can
be rewritten as Sr(ω) =W (iω)W (−iω) with

W (iω) =
br−1(iω)r−1 +br−2(iω)r−2 + · · ·+b0

(iω)r +ar−1(iω)r−1 + · · ·+a0
. (7)

If necessary, to obtain the form (7) numerator and denomina-
tor coefficients of W are expanded and scaled. Finally, from
realization thoery, we have that rational functions of the form
(7) are in correspondance to the equivalent continuous time
state space representation [16] (companion form) given by

{
ṡt = Fst +Gwt

zt = Hst
(8)

where wt ∼N (0, I), the model matrices are equal to

F =




0 1 0 . . . 0
0 0 1 . . . 0

. . .
0 0 0 . . . 1
−a0 −a1 −a2 . . . −ar−1



, G =




0
0
...
0
1



,

H =
[
b0 b1 b2 . . . br−1

]
,

and the initial state is s0 ∼N (0,Σ0), with Σ0 computed as
solution of the Lyapunov equation FX +XFT +GGT = 0.

III. MAIN CONTRIBUTION
Here, we present the main contributions of the paper. First,

we state the problem at hand. Second, we formally show how
to built an exact state space representation for a certain class
of GPs. Then, we bridge GP regression and Kalman filtering,
providing a clear and systematic methodology to implement
the filter. As it will be clear, we first focus on estimating the
process of interest over an “observable” finite collection of
points. Finally, we show how to extend the estimation over
an arbitrary “unobservable” finite collection of locations.

A. Problem Formulation

Consider a function f : X ×R+→ R modeled as a zero-
mean Gaussian Process with covariance K. Hereafter, for
the sake of notation ease, we use ft(x) instead of f (x, t). We
assume X to be a finite collection of points, i.e.,

X :=
{

x1, . . . ,xN |xi ∈ Rd
}
.

We assume noisy measurements of the form (1) come from
a subset Xmeas ⊆X of given locations. We formally define
Xmeas as follows.

Definition 2 (Measurements Space): Consider the finite
set X . We denote with Xmeas ⊆X a finite collection of
points containing1 M ≤ N locations from X , i.e.

Xmeas := {x1, . . . ,xM |xi ∈X } .

1Observe that, by following the notation used in Definition 2, we have
that the first M points of X represents the measurements locations. This
holds without loss of generality assuming X has been a priori ordered.
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Fig. 1: Spatio-temporal sampling and measurements collection over
time: the x-axis represents discrete time instants while the y-axis
represents discrete space locations, i.e., X . Red crosses highlight
all the possible measurements locations contained in Xmeas. Black
circles represent the locations M (k) where measurements are
collected. Finally, white circles represent the prediction locations
contained in Xpred.

�

Precisely, to consider the most general case, we assume to
be able to collect the measurements at discrete time instants
t = kT , where T denotes the sampling time, only from a
time-varying subset of locations, namely M (k) ⊆ Xmeas
(|M (k)|= Mk).

The problem we want to solve is that of estimating f
over the entire “partially observable” domain X , exploiting
measurements coming from the “observable” set Xmeas. The
problem could arise in diverse applications, e.g., in weather
forecasting where, given a small finite set of weather stations
which are able to collect measurements at certain discrete
time instants, the goal is to estimate the weather conditions
on a larger area.
To state our solution, we restrict the analysis on a specific
yet sufficiently rich class of kernel functions.

Assumption 3 (Generating Kernel properties): The
kernel function K, covariance of the Gaussian process ft(x),
is separable in time and space and it is stationary in time,
namely,

K(x,x′, t, t ′) = Ks(x,x′)h(τ), τ = t ′− t .

In addition, the power spectral density Sr(ω) of h(τ) is a
rational function of order 2r. �

Differently from [10], [11], in Assumption 3 we do not
require space stationarity of Ks but only time stationarity.
This let us consider a wider class of generating space kernels
Ks, e.g., kernel spline.

Our solution consists of two steps: first we show how to
estimate the process ft over Xmeas (Section III-B). Then,
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Fig. 2: Process and measurements formation: we assume there are
five spatial locations, x j ∈Xmeas, each of them described by the
state space system S j of the form (9) driven by the noise w j

t . The
z j
t ’s are then coupled trough the space kernel factor K1/2

s to form ft
which is sampled every T [s]. The matrix Ik “selects” the available
locations at kT . Finally the measurements vector yk is obtained
adding measurements noise vk, in vector form.

we extend our result to obtain a prediction of the process
outside Xmeas (Section III-C). Precisely, we show how our
first solution can be exploited to reconstruct ft on the set
Xpred where

Xpred := X /Xmeas , (P := |Xpred|= N−M) .

Figure 1 shows an example of spatio-temporal sampling,
as well as the measurements collection process over time.

B. Kalman Regression on Xmeas

To implement the Kalman equations (6), the first step is
to build a state space representation for the Gaussian process
ft . In particular, we are interested in reconstructing ft over
the “observable” Xmeas. To compactly represent the process
over Xmeas, it is convenient to define the vector

ft := [ ft(x1), . . . , ft(xM)]T ,

The next proposition exploits Assumption 3 and the state-
space realization for rational PSD given in (8) to show that
the process ft , admits an equivalent exact continuous-time
state-space representation.

Proposition 4 (Equivalent CT-SS representation for ft ):
Consider the process ft : Xmeas ×R+ 7→ RM . Assume the
generating kernel K satisfies Assumption 3. Let the triplet
(F,G,H) be a state-space representation for Sr(ω) as
described in II-C. Then, ft admits the following strictly
proper state-space representation





S j :

{
ṡ j

t = Fs j
t +Gw j

t

z j
t = Hs j

t
j ∈ {1, . . . ,M} ,

ft = K̄1/2
s zt

(9)

where j is an index cycling through all the input locations of
Xmeas; where zt :=

[
z1

t , . . . ,z
M
t
]T and K̄s ∈RM×M is obtained

sampling Ks over Xmeas; and where w j
t and s j

0 are defined
as for system (8).

Proof: First of all, notice that the process ft is a
Gaussian process since it is the solution of a linear differen-
tial equation driven by Gaussian noise wt . To conclude the

yk Time Varying KF K̄1/2
s H

ŝk f̂k

Ψ
η̂k

Fig. 3: Block-diagram of the estimation scheme. The block “Time
Varying KF” implements Eqs. (6) applied to the system of Propo-
sition 5. All other blocks are static: according to Eq. (12), K̄1/2

s H
is needed to compute the estimate f̂k over Xmeas. According to
Eq. (16), Ψ is used to compute η̂k over Xpred.

proof we need to show that the covariance of ft is indeed
K̄ = K̄sh(τ). As previously shown, the first two equations
of model (9) are the state space representation of the ratio-
nal power spectral density S(ω) thus E

[
z j

t+τ z j
t

]
= h(τ). It

follows that

E [ft+τ ft ] = K̄1/2
s [I h(τ)]

(
K̄1/2

s

)T
= K̄sh(τ) .

Observe that the subsystems S j in (9) are independent one
from each other in the sense that one can easily verify that
E
[
(si

t)
T (s j

t )
]
= 0 ∀t,∀i 6= j. Basically, Proposition 4 states

that, for each location x j ∈Xmeas, the time evolution of ft
admits a state space representation given by the system S j
in equation (9). Then, these state space representations are
“combined” through the sampled spatial kernel K̄s to build a
representation for the overall process ft . Observe that Propo-
sition 4 gives a continuous-time state-space representation for
the process. However, the Kalman equations (6) are defined
in discrete time. Thus, in the following we show how to
reconstruct an estimate f̂k of ft at discrete time instants, say
t = kT 2, defined as

f̂k := E
[
fkT |{x j,y

j
`} , x j ∈M (`) , `= 0, . . . ,k

]
. (10)

Finally, we recall from Section III-A that we assume to
collect measurements coming from M (k) at t = kT , i.e.,

y j
k = fk(x j)+ v j

k , x j ∈M (k) , v j
k ∼N (0,σ2) , (11)

Then, given the state-space model of Proposition 4 and a
measurement model (11), we have all the necessary elements
to bridge GP regression and Kalman filtering on Xmeas.

Proposition 5 (Kalman regression on Xmeas): Assume
Assumption 3 holds. Moreover, assume to collect periodic
measurements of the form (11) at every t = kT . Then, the
estimate f̂k of fk is given by

f̂k = K̄1/2
s Hŝk , (12)

where H := blkdiag(H, . . . ,H), ŝk is the output of the time-
varying Kalman filter (6) applied to the discrete-time system
(5) with matrices (A,Ck,Q,R) where A := blkdiag(F̄ , . . . , F̄),
Q := blkdiag(Q̄, . . . , Q̄), being F̄ and Q̄ defined as

F̄ = eFT , Q̄ =
∫ T

0

(
eFτ)GGT (eFτ)T

dτ ,

2In the following, for brevity, we might drop the sampling time T from
kT and use just k to denote the corresponding discrete time instant.



and where R :=σ I and Ck := IkK̄1/2
s H, being Ik ∈ {0,1}Mk×M

the matrix selecting the locations contained in M (k).
The Kalman filter is initialized as ŝ0|−1 = 0, Σ0|−1 =
blkdiag(Σ0, . . . ,Σ0), where Σ0 is solution of the Lyapunov
equation FX +XFT +GGT = 0. �

Proof: The proof directly follows from the dis-
cretization of the CT-SS models S j of Proposition 4.
Once the overall system discrete system, with space vector
sk :=

[
(s1

k)
T , . . . ,(sM

k )T
]T , is rewritten in compact matrix

form, the Kalman equations (6) straightforward apply.
Figure 2 shows a representation of the process and of

the measurements formations. All the bold symbols refer
to vector notation and are obtained stacking in vector form
the corresponding non-bold symbols. Additionally, the upper
part of Figure 3 shows a block diagram of the estimation
scheme. Observe that the block “Time Varying KF”, which
implements the Kalman equations (6), is the only time-
varying block. This is due to the time-varying measurements.
Consequently, if the Ck matrix is constant, the Kalman
gain converges to a constant value which can be computed
offline. In this case the filtering correspond to a static matrix
multiplication hence, the computational burden (see Section
IV) is alleviated.

To conclude this section, we present an exhaustive exam-
ple to help the reader’s intuition in the building process of
the presented estimation procedure.

Example 6: Consider the exponential time kernel h(τ)

h(τ) = λe−σt |τ|

satisfying Assumption 3 since its PSD Sr is equal to

Sr(ω) =

√
2λσt

(σt + iω)

√
2λσt

(σt − iω)
(13)

which is rational of order 2. Now, consider a zero-mean
Gaussian process ft(x) with covariance

K(x,x′,τ) = Ks(x,x′)h(τ) = e−σx(x1−x2)
2
λe−σt |τ| (14)

that is, a Gaussian spatial kernel and a exponential time ker-
nel. Thanks to Proposition 4, since K satisfies Assumption 3,
ft admits a state space representation. In particular, given Sr
as in (13) with

W (iω) =

√
2λσt

(σt + iω)
,

it is easy to see the state-space model matrices are equal to

F =−σt , H =
√

2λσt , G = 1 ,

while the matrix K̄1/2
s is computed as the Cholesky factor-

ization of the sampled kernel K̄s.
Finally, as stated in Proposition 5, the discrete time state-
space representation for fk is given by

F̄ = e−σt T , H =
√

2λσt , Q̄ =
∫ T

0
e−2σt τ dτ .

To conclude the example we show one case when h(·) does
not satisfy Assumption 3. Indeed, considering the squared
exponential (Gaussian) kernel defined as

h(τ) = λe−σ2
t τ2

.

it can be seen its power spectral density is not rational,

S(ω) =
√

π
λ
σt

e−
(

ω
2σt

)2

. (15)

It is worth noticing that, in cases when the PSD S of h is
not rational it is always possible to build a rational PSD
Ŝr which approximate the true one. Different approximating
methods can be used, e.g., Taylor series expansion or Pade
approximation. This leads to an approximate state-space
model for ft . In Section V we present some simulations and,
as it will be explained, to approximate S we use a different
approach. Indeed, the Ŝr is computed as the solution of a
suitable non-linear weighted least-squares problem. �

C. Kalman Regression on Xpred

Here we extend the result of Proposition 5 to build an
estimate of the process fkT over the “prediction” space Xpred
as defined at the end of Section III-A.

To this end, let

ηk := fk(Xpred) ,

be the vector representing the process fkT sampled over
Xpred. Finally, we introduce the following symbols

η̂k := E
[
ηk|{x j,y

j
`} , x j ∈M (`) , `= 0, . . . ,k

]
,

Γ =Cov(ηk, fk) = K̄s(Xpred,Xmeas) ,

Vη =Var(ηk) = K̄s(Xpred,Xpred) ,

where K̄s(·, ·) denotes the kernel Ks evaluated in all the
locations contained in its arguments.

Proposition 7 (Kalman Regression on Xpred): Consider
the process ft : X ×R+ 7→ R generated by the kernel K
satisfying Assumption 3. Then, the estimate η̂k of ηk is
given by

η̂k = Ψ f̂k , (16)

where Ψ := Γ K̄−1
s . The posterior variance is given by

Var
(

ηk|{x j,y
j
`} , x j ∈M (`) , `= 0, . . . ,k

)
=

Vη −Γ
(

K̄−1
s − K̄−1

s
(
K̄−1

s +R−1)−1
K̄−1

s

)
ΓT .

�

Proof: Since K satisfies Assumption 3 then, we have
that K(x,x′,τ)=Ks(x,x′)h(τ), τ =(k− j)T , and, without loss
of generality, we can assume h(0) = 1. Then, it holds that
Var(fk) = K̄s. In the following we drop the sampling time T
from the notation; moreover, we assume to be at time instant
k, while j < k represents a generic previous time instant.
Now, let be ϕk := [fT

1 , . . . , f
T
k−1]

T . Moreover, for brevity
instead of h(k− j) we use the simpler hk− j. Hence, it can
be seen that Cov(f j,ηk) = hk− jΓT .
We first study p(ϕk,ηk|fk). For the conditional variance, we
have that

Var(ϕk,ηk|fk) =Var([ϕT
k ηT

k ]
T )− (17)

Cov([ϕT
k ηT

k ]
T , fk)Var(fk)

−1Cov(fT
k , [ϕ

T
k ηT

k ]
T )



where

Var([ϕT
k ηT

k ]
T ) =



K̄s h1K̄s h2K̄s · · · hk−1ΓT

K̄T
s hT

1 K̄s h1K̄s · · · hk−2ΓT

...
. . .

...
K̄s h1ΓT

ΓhT
k−1 ΓhT

k−2 · · · Vη



,

Cov(fT
k ,[ϕ

T
k ηT

k ]
T ) =

[
K̄shk−1 · · · K̄sh1 ΓT

]
.

It is easy to see that the second term of the right hand side
of (17) has the following structure




hk−1ΓT

∗ hk−2ΓT

...
h1ΓT

ΓhT
k−1 ΓhT

k−2 · · · ∗



.

Hence, by subtracting it to the first term, i.e., Var([ϕT
k ηT

k ]
T ),

the last column and the last row cancel out (except for the
diagonal block). This means that ϕk and ηk are conditionally
independent given fk. Thus we have that

p(ϕk,ηk|fk) = p(ϕk|fk)p(ηk|fk). (18)

Thank to this we can write

p(ηk|ϕk, fk)
Bayes

∝ p(ϕk,ηk|fk)p(fk)

(18)
= p(ηk|fk)p(ϕk|fk)p(fk)

∝ p(ηk|fk)p(fk) ∝ p(ηk|fk) ,

so ηk is independent from all the past f j contained in ϕk.
Then, we have that

E [ηk |{x j,y
j
`} , x j ∈M (`) , `= 0, . . . ,k

]
=

= E
[
E [ηk|ϕk, fk] |{x j,y

j
`} , x j ∈M (`) , `= 0, . . . ,k

]

= E
[
E [ηk|fk] |{x j,y

j
`} , x j ∈M (`) , `= 0, . . . ,k

]

= Γ K̄−1
s f̂k = Ψ f̂k ,

where the first equality holds because we are conditioning
on a larger σ -algebra; the second holds thanks to (18) and
the third comes from the definition (10) of f̂k. Finally, for
the posterior variance we refer the reader [17], Appendix
A - Lemma 1 combined with the conditional independence
stated in Eq. (18).

The combination of Proposition 5 and Proposition 7 state
that the output of the Kalman filter captures all the necessary
information, contained in the measurements, to estimate the
entire process. Indeed, f̂k is a sufficient statistic to reconstruct
fkT over the entire domain X . Figure 3 shows a block
diagram of the overall estimation scheme.

IV. COMPUTATIONAL COMPLEXITY
Before presenting compelling numerical tests, we discuss

some computational aspects.
As already mentioned, the computational burden per iter-

ation for the standard nonparametric approach grows cubical
with the total number of collected measurements. Interest-
ingly, thanks to its recursive implementation, the proposed
Kalman’s computational complexity scales as O(rMMk +
rM3

k ), where Mk is the number of collected measurements
per iteration and r is the order a single state space model
S j in (9). The first term in the cost is due to the matrix
vector multiplication to compute the state update of Eq. (6c);
while the second to the computation of the Kalman gain
as in Eq. (6e). Additionally, it is worth noticing that to
compute η̂k, the matrix Ψ∈RP×M is fixed thus, in a real-time
implementation, can be pre-computed offline. Therefore, to
reconstruct the entire process only a matrix-vector multipli-
cation, which costs O(MP), is needed. Thanks to this, our
Kalman regression procedure is characterized by an overall
computational complexity per iteration which scales as

O(rMMk + rM3
k +MP) . (19)

Conversely, the nonparametric approach needs to invert a
matrix of increasing size at every iteration plus a matrix-
vector multiplication to compute the estimate for the overall
process, leading to a complexity of order

O



(

k

∑̀
=1

M`

)3

+P
k

∑̀
=1

M`


 . (20)

Thus, in a real-time implementation, the computational cost
per iteration for the Kalman scales linearly with the model
complexity r. Conversely the cost for the classical nonpara-
metric implementation grows cubically with the total number
of collected measurements.
In the next section, we compare the proposed Kalman
regression scheme with a modified version of the classical
nonparametric implementation [7] based on a finite memory
approach, which we refer to as truncated nonparametric.
That is instead of storing in memory all the collected mea-
surements up to the current iteration, only the measurements
collected during the last q time instants are stored and
processed.This is commonly done in practice in order to keep
memory and computational requirements fixed. From (20),
it is easy to see that the truncated nonparametric scales as

O



(

k

∑
`=k−q

M`

)3

+P
k

∑
`=k−q

M`


 . (21)

V. SIMULATIONS
In this section we present some simulations to show the

effectiveness of the proposed Kalman regression.
The hardware test-bed consists of a 2,7 GHz Intel Core i5

processor with 16GB RAM running MATLABr 2015. To
plot the spatio-temporal evolution of the modeled function,
we work on a 1D space. More specifically, X consists of a
line of length 100 [p.u.], uniformly sampled every 1 [p.u.]
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(a) Nonparametric estimate.
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(b) Posterior variance.

Fig. 4: 3D representation of the optimal output obtained using the
nonparametric estimation procedure.

(|X | = N = 100). The sampling time is fixed and equal
to 0.2 [s]. Xmeas consists of M = 80 randomly selected
locations. Finally, σ = 1 [p.u.]. To test the effectiveness of
the proposed approach even on processes whose kernel does
not satisfy Assumption 3, the selected process is drawn by
a spatio-temporal Gaussian kernel K with

Ks(x,x′) = e−0.2‖x−x′‖2 , h(τ) = e−‖τ‖
2/2 .

As mentioned at the end of Exampled 6, to approximate the
non rational PSD S(ω) we compute Ŝr(ω) as the solution
of a parametric non-linear weighted least-squares problem.
More specifically, for a given order r we have that

Ŝr(ω) = argmin
{ai}ri=0 ,{bi}r−1

i=0

∫ ∞

0
‖Sr(w)−S(w)‖S(ω) dw .

where {ai}r
i=0 and {bi}r−1

i=0 are the coefficients of the spectral
factor W (iω) of Sr(ω).

A. Estimation performance
First we compare Kalman with respect to the classical

nonparametric method. At each time step k, we collect noisy
measurements of the form (11) from Mk randomly selected
locations within Xmeas, where Mk is randomly drawn from
the uniform distribution over the set [60,80].
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(a) Kalman regression on X .
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Fig. 5: 3D representation of the output of the proposed Kalman
regression procedure. State-space model of order r = 6.

Figures 4 and 5 show the estimates and the corresponding
posterior variance obtained using the nonparametric method
and Kalman, respectively. The nonparametric approach, at
every iteration k, uses all the measurements collected up to
k. Observe how the output are almost exactly the same. The
difference is due to the fact that Kalman is built on Ŝr(ω),
with r = 6, instead of the true S(ω). Finally, notice that since
the measurements locations change at every iteration, the
posterior variance oscillates.

B. Computational performance

Here, we want to compare the proposed Kalman regression
with the truncated nonparametric implementation described
in Section IV. In the following we put M = N (Xmeas ≡
X ), so P = 0 (Xpred = /0). Moreover we assume Mk = M,
which is equivalent to collect measurements from all the
locations. Thanks to this, the computational complexities per
iteration (see Section IV) reduce to O(rM3) for Kalman and
to O(q3M3) for the truncated nonparametric, respectively.
Therefore, r and q represent a measure for the complexity
of the corresponding approach.
We compare the methods in term of CPU time per iteration



1 2 3 4 5 6
memory steps q - model order r

55

60

65

70

75

80

85

90

95

100

F
it

[%
]

truncated nonparametric
kalman filter

Fig. 6: Plot of the fit defined in (22). Kalman is plotted as function
as function of the order r of the rational model used to approximate
S(ω). The truncated nonparametric is plotted as function of the
memory steps q.

and in terms of estimation fit computed as

Fit [%] =

(
1− ‖̂f∗− f̂np‖

‖̂fnp‖

)
100 , (22)

where f̂∗ denotes the estimate obtained either using Kalman
or the truncated nonparametric; while f̂np denotes the classi-
cal nonparametric estimate using all the available measure-
ments. For the truncated nonparametric, Figure 6 shows the
fit as function of the memory steps q. For Kalman, the fit
is plotted as function of the model order r. It can be seen
that, for the same level of complexity, Kalman in general
achieves a better fit. We stress the fact that the performance
in terms of fit for the truncated nonparametric highly depends
on the ratio between the process and the measurements noise.
Indeed, for high process noise, the information contained
in the measurements collected during the last few iterations
already contains all the necessary information to reconstruct
the process. Thus, the fit curve would increase more rapidly.
Conversely, Kalman is optimal hence it does not depend
on the ratio. As final comparison, Figure 7 reports the
fit versus the CPU time. The main fact to be highlighted
is that to achieve a higher level of estimation accuracy,
Kalman requires even less CPU time than the truncated
nonparametric. It is important to underline that the CPU time
deeply depend on M as well as on r and q. Indeed, for greater
values of M Kalman could overwhelm the truncated approach
even more. Conversely, if smaller value for M are chosen,
the truncated nonparametric might be more efficient.

VI. CONCLUSIONS AND FUTURE WORKS

In this work we focused of the efficient estimation of
time-varying spatio-temporal processes by combining GP
nonparametric regression and Kalman filtering. We devel-
oped a computationally efficient and exact procedure for
estimating the underlying process on a finite number of
measurement and prediction locations via a finite dimen-
sional state-space representation. The results are based on
a specific separability assumption on the generating kernel
for the modeled process, and we showed that the major
computational bottleneck is given only by the number of
distinct measurement locations, and not by the prediction
locations. Future avenues of research regard the relaxation of
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Fig. 7: Plot of the fit defined in (22) versus the CPU time per
iteration required.

the assumption on the generating kernel and the extension of
the proposed approach to prediction over any desired point
in time and space under non-periodic sampling.
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